Multi-Scale Image- and Feature-Level Alignment for Cross-Resolution Person Re-Identification

Author:

Zhang Guoqing1234ORCID,Wang Zhun1,Zhang Jiangmei2,Luo Zhiyuan1,Zhao Zhihao2

Affiliation:

1. School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Fundamental Science on Nuclear Wastes and Environment Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China

3. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, China

4. Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Cross-Resolution Person Re-Identification (re-ID) aims to match images with disparate resolutions arising from variations in camera hardware and shooting distances. Most conventional works utilize Super-Resolution (SR) models to recover Low Resolution (LR) images to High Resolution (HR) images. However, because the SR models cannot completely compensate for the missing information in the LR images, there is still a large gap between the HR image recovered from the LR images and the real HR images. To tackle this challenge, we propose a novel Multi-Scale Image- and Feature-Level Alignment (MSIFLA) framework to align the images on multiple resolution scales at both the image and feature level. Specifically, (i) we design a Cascaded Multi-Scale Resolution Reconstruction (CMSR2) module, which is composed of three cascaded Image Reconstruction (IR) networks, and can continuously reconstruct multiple variables of different resolution scales from low to high for each image, regardless of image resolution. The reconstructed images with specific resolution scales are of similar distribution; therefore, the images are aligned on multiple resolution scales at the image level. (ii) We propose a Multi-Resolution Representation Learning (MR2L) module which consists of three-person re-ID networks to encourage the IR models to preserve the ID-discriminative information during training separately. Each re-ID network focuses on mining discriminative information from a specific scale without the disturbance from various resolutions. By matching the extracted features on three resolution scales, the images with different resolutions are also aligned at the feature-level. We conduct extensive experiments on multiple public cross-resolution person re-ID datasets to demonstrate the superiority of the proposed method. In addition, the generalization of MSIFLA in handling cross-resolution retrieval tasks is verified on the UAV vehicle dataset.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province of China

Nuclear energy development project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3