Abstract
This study reports the hydrothermal liquefaction (HTL) of microalgae Spirulina platenesis in the presence of alcohol or formic acid co-solvents. HTL runs are performed in a 1.8-L batch reactor at 300 °C using an alcohol (methanol and ethanol) or formic acid co-solvent. Consequently, hydrodeoxygenation (HDO) of resultant algal biocrude is performed at 350 °C for 2 h under high hydrogen pressure (~725 psi) using the Ru/C catalyst. The HTL results are compared with the control HTL run performed in water only. The results of the study show that the addition of co-solvents leads to a 30–63% increased biocrude yield over the control HTL run. Formic acid results in a 59.0% yield of biocrude, the highest amongst all co-solvents tested. Resultant biocrudes from formic acid-assisted and ethanol-assisted HTL runs have 21.6% and 3.8–11.0% higher energy content, respectively, than that of the control run. However, that of the methanol-assisted HTL results in biocrude with 4.2–9.0% lower energy density. Viscosity of biocrude from methanol- or ethanol-assisted HTL is higher than the control HTL but formic acid-assisted HTL results in a less viscous biocrude product. In addition, the HDO study leads to a 40.6% yield of upgraded oil, which is characterized by a higher net energy content and lower O/C and N/C ratios when compared to the initial HTL biocrude.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献