Hydrothermal liquefaction of microalga with and without seawater: Effects of reaction temperature on yield and hydrocarbon species distribution in biocrude

Author:

Eboibi B. E.12ORCID,Eboibi O.3,Okan O. L.1,Udochukwu E. C.2,Uku P. E.2,Agarry S. E.24

Affiliation:

1. Department of Chemical Engineering Delta State University Delta Nigeria

2. Department of Chemical Engineering Federal University Otuoke Otuoke Nigeria

3. Department of Mechanical Engineering Delta State University of Science and Technology Delta Nigeria

4. Department of Chemical Engineering Ladoke Akintola University of Technology Ogbomoso Nigeria

Abstract

AbstractA halophytic microalga Tetraselmis sp. biomass diluted with deionized water and seawater was converted to biocrude with the hydrothermal liquefaction (HTL) process in a batch reactor at 310, 330, 350, and 370°C, 15 min with %w/w solids. The biocrude yield, carbon, and energy recovery in biocrude and hydrocarbon species distribution from deionized water base HTL (DW HTL) and seawater base HTL (SW HTL) were evaluated. The results revealed that irrespective of reaction medium, the yield in biocrude increased with an increase in temperature, reaching a maximum of 50–56 wt% at 350°C, characterized by a higher heating value of up to 35.6 MJ/kg. The carbon and energy recovery at 350°C were 85% and 89% respectively, for SW HTL, while the DW HTL stream was 10% and 12% lower. Also, the GC MS analysis of biocrude obtained from both streams contains a complex mixture of compounds such as hydrocarbons, phenolics, and large amounts of nitrogenated and oxygenated compounds. The metallic constituents in biocrudes derived from both steams showed no substantial variations. The study showed a marginal increase in biocrude yield and its HHV with a reduction in oxygen and nitrogen contents from the SW HTL stream, suggesting the potential of seawater as a reaction medium.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3