Stochastic Compartment Model with Mortality and Its Application to Epidemic Spreading in Complex Networks

Author:

Granger Téo1ORCID,Michelitsch Thomas M.1ORCID,Bestehorn Michael2ORCID,Riascos Alejandro P.3ORCID,Collet Bernard A.1

Affiliation:

1. Sorbonne Université, Institut Jean le Rond d’Alembert, CNRS UMR 7190, 4 Place Jussieu, 75252 Paris, Cedex 05, France

2. Institut für Physik, Brandenburgische Technische Universität Cottbus-Senftenberg, Erich-Weinert-Straße 1, 03046 Cottbus, Germany

3. Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia

Abstract

We study epidemic spreading in complex networks by a multiple random walker approach. Each walker performs an independent simple Markovian random walk on a complex undirected (ergodic) random graph where we focus on the Barabási–Albert (BA), Erdös–Rényi (ER), and Watts–Strogatz (WS) types. Both walkers and nodes can be either susceptible (S) or infected and infectious (I), representing their state of health. Susceptible nodes may be infected by visits of infected walkers, and susceptible walkers may be infected by visiting infected nodes. No direct transmission of the disease among walkers (or among nodes) is possible. This model mimics a large class of diseases such as Dengue and Malaria with the transmission of the disease via vectors (mosquitoes). Infected walkers may die during the time span of their infection, introducing an additional compartment D of dead walkers. Contrary to the walkers, there is no mortality of infected nodes. Infected nodes always recover from their infection after a random finite time span. This assumption is based on the observation that infectious vectors (mosquitoes) are not ill and do not die from the infection. The infectious time spans of nodes and walkers, and the survival times of infected walkers, are represented by independent random variables. We derive stochastic evolution equations for the mean-field compartmental populations with the mortality of walkers and delayed transitions among the compartments. From linear stability analysis, we derive the basic reproduction numbers RM,R0 with and without mortality, respectively, and prove that RM<R0. For RM,R0>1, the healthy state is unstable, whereas for zero mortality, a stable endemic equilibrium exists (independent of the initial conditions), which we obtained explicitly. We observed that the solutions of the random walk simulations in the considered networks agree well with the mean-field solutions for strongly connected graph topologies, whereas less well for weakly connected structures and for diseases with high mortality. Our model has applications beyond epidemic dynamics, for instance in the kinetics of chemical reactions, the propagation of contaminants, wood fires, and others.

Publisher

MDPI AG

Reference47 articles.

1. Rhodes, P., and Bryant, J.H. (2024, April 22). Public Health. Encyclopedia Britannica. Available online: https://www.britannica.com/topic/public-health.

2. A contribution to the mathematical theory of epidemics;Kermack;Proc. Roy. Soc. A,1927

3. Dynamical behavior of epidemiological models with non-linear incidence rate;Liu;J. Math. Biol.,1987

4. Global dynamics of a SEIR model with varying total population size;Li;Math. Biosci.,1999

5. Anderson, R.M., and May, R.M. (1992). Infectious Diseases in Humans, Oxford University Press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrate-and-fire model of disease transmission;Physical Review E;2024-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3