Corrosion of Chromium Coating Fabricated on Zircaloy-4 Substrate

Author:

Golgovici Florentina1ORCID,Diniași Diana12ORCID,Dincă Paul Pavel3,Butoi Bogdan3,Demetrescu Ioana14ORCID

Affiliation:

1. Department of General Chemistry, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei Street, No. 313, 060042 Bucharest, Romania

2. Institute for Nuclear Research Pitesti, Campului Street, No. 1, 115400 Mioveni, Romania

3. National Institute for Laser, Plasma and Radiation Physics, Atomistilor Street, No. 409, 077125 Magurele, Romania

4. Academy of Romanian Scientists, 3 Ilfov, 050094 Bucharest, Romania

Abstract

In the nuclear industry, coated cladding is a topical problem and it is chosen as the near-term and most promising ATF (Accident-Tolerant Fuel) cladding concept. The main objective of this concept is to enhance the accident tolerance of nuclear power plants and accordingly, the performance of cladding is expected to be improved. This work assesses the corrosion performance of a Zircalloy-4 alloy coated with a thin chromium coating by MS (magnetron sputtering), tested under a CANDU (CANada Deuterium Uranium) reactor primary circuit simulated condition (LiOH solution, 10 MPa, 310 °C, pH = 10.5). The anticorrosive performance is evaluated by a gravimetric analysis, a metallographic analysis, X-ray diffraction, electronic microscopy, and electrochemical methods. A four times less gain mass was noticed compared to uncoated Zircaloy-4, indicating a smaller corrosion rate. The SEM micrographs illustrate that the coatings are still adherent, and they are keeping the initial morphological characteristics during the autoclaving process. A SEM cross-section analysis shows values of the thickness of the coatings between 0.8 and 1.46 µm. By XRD, the presence of Cr2O3 oxide is identified. Electrochemical testing confirms good stability and good corrosion performance of Cr coating over time under autoclave conditions.

Funder

National Program for Research of the National Association of Technical Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3