Effective Realization of Multi-Objective Elitist Teaching–Learning Based Optimization Technique for the Micro-Siting of Wind Turbines

Author:

Hussain Muhammad Nabeel,Shaukat Nadeem,Ahmad Ammar,Abid Muhammad,Hashmi AbrarORCID,Rajabi ZohrehORCID,Tariq Muhammad Atiq Ur RehmanORCID

Abstract

In this paper, the meta-heuristic multi-objective elitist teaching–learning based optimization technique is implemented for wind farm layout discrete optimization problem. The optimization of wind farm layout addresses the optimum siting among the wind turbines within the wind farm to accomplish economical, profitable, and technical features. The presented methodology is implemented with multi-objective optimization problem through different targets such as minimizing cost, power output maximization, and the saving of the number of turbines. These targets are investigated with some case studies of multi-objective optimization problems in three scenarios of wind (Scenario-I: fixed wind direction and constant speed, Scenario-II: variable wind direction and constant speed, and Scenario-III: variable wind direction and variable speed) for the optimal micro-siting of wind turbines in a given land area that maximizes the power production while minimizing the total cost. To check the effectiveness of the algorithm, firstly, the results obtained for the three different scenarios have been compared with past studies available in the literature. Secondly, the numbers of turbines have also been optimized by using teaching–learning based optimization. It has been observed that the proposed algorithm shows the optimal layouts along with the optimal number of turbines with minimum fitness evaluation. Finally, the concept of elitism has been introduced in the teaching–learning based optimization algorithm. It is proposed that if elitist-teaching–learning based optimization with elite size of 15% is used, computational expense can be significantly reduced. It can be concluded that that the results obtained by the proposed algorithm are more accurate and advantageous than others.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3