Model-Free High-Order Sliding Mode Controller for Station-Keeping of an Autonomous Underwater Vehicle in Manipulation Task: Simulations and Experimental Validation

Author:

González-García Josué,Gómez-Espinosa AlfonsoORCID,García-Valdovinos Luis GovindaORCID,Salgado-Jiménez TomásORCID,Cuan-Urquizo EnriqueORCID,Cabello Jesús Arturo EscobedoORCID

Abstract

The use of autonomous underwater vehicles (AUVs) has expanded in recent years to include inspection, maintenance, and repair missions. For these tasks, the vehicle must maintain its position while inspections or manipulations are performed. Some station-keeping controllers for AUVs can be found in the literature that exhibits robust performance against external disturbances. However, they are either model-based or require an observer to deal with the disturbances. Moreover, most of them have been evaluated only by numerical simulations. In this paper, the feasibility of a model-free high-order sliding mode controller for the station-keeping problem is validated. The proposed controller was evaluated through numerical simulations and experiments in a semi-Olympic swimming pool, introducing external disturbances that remained unknown to the controller. Results have shown robust performance in terms of the root mean square error (RMSE) of the vehicle position. The simulation resulted in the outstanding station-keeping of the BlueROV2 vehicle, as the tracking errors were kept to zero throughout the simulation, even in the presence of strong ocean currents. The experimental results demonstrated the robustness of the controller, which was able to maintain the RMSE in the range of 1–4 cm for the depth of the vehicle, outperforming related work, even when the disturbance was large enough to produce thruster saturation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3