Analysis of Ionospheric Disturbances Caused by the 2018 Bering Sea Meteor Explosion Based on GPS Observations

Author:

Luo Yiyong,Yao YibinORCID,Shan Lulu

Abstract

The Bering Sea meteor explosion that occurred on 18 December 2018 provides a good opportunity to study the ionospheric disturbances caused by meteor explosions. Total electron content (TEC) is the core parameter of ionospheric analysis. TEC and its changes can be accurately estimated based on the Global Positioning System (GPS). TID is detected in time and frequency domain based on power spectrum and Butterworth filtering method. By analyzing the waveform, period, wavelength, propagation speed and space-time distribution of TID, the location of the TID source is determined, and the process of TID formation and propagation is understood. The TID caused by meteor explosions has significant anisotropy characteristic. Two types of TID were found. For the first type, the average horizontal propagation velocity is 250.22 ± 5.98 m/s, the wavelength is ~135–240 km, the average period is about 12 min, and the propagation distance is less than 1400 km. About 8 min after the meteor explosion, the first type of TID source formed and propagated radially at the velocity of 250.22 ± 5.98 m/s. For the second type, the propagation velocity is ~434.02 m/s. According to the waveform, period, wavelength and propagation velocity of the TID, it is diagnosed to be the midscale traveling ionospheric disturbances (MSTID). Based on the characteristics of TID, we infer that the TID is excited by the gravity waves generated by the meteor explosion, which is in accordance with the propagation law of gravity waves in the ionosphere. And it is estimated that the average velocity of the up-going gravity waves is about 464.58 m/s. A simple model was established to explain the formation and the propagation of this TID, and to verify the characteristics of the TID propagation caused by nuclear explosion, earthquake, tsunami, and Chelyabinsk meteorite blast. It is estimated that the position of the TID source is consistent with the meteor explosion point, which further indicates that the TID is caused by the meteor explosion and propagates radially.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi‐Instrument Observations of Various Ionospheric Disturbances Caused by the 6 February 2023 Turkey Earthquake;Journal of Geophysical Research: Space Physics;2023-12

2. Deep Learning Driven Detection of Tsunami Related Internal Gravity Waves: a path towards open-ocean natural hazards detection;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

3. Ionospheric Effects of the Kamchatka Meteoroid: Results of GPS Observations;Kinematics and Physics of Celestial Bodies;2023-04

4. Ionospheric effects of the Kamchatka meteoroid: GPS observations;Kinematika i fizika nebesnyh tel (Online);2023-03-03

5. Resonance Electromagnetic Effect of the Kamchatka Meteoroid;Kinematics and Physics of Celestial Bodies;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3