Multi‐Instrument Observations of Various Ionospheric Disturbances Caused by the 6 February 2023 Turkey Earthquake

Author:

Haralambous Haris1ORCID,Guerra Marco23ORCID,Chum Jaroslav4ORCID,Verhulst Tobias G. W.5ORCID,Barta Veronika6ORCID,Altadill David7ORCID,Cesaroni Claudio2ORCID,Galkin Ivan8,Márta Kiszely9ORCID,Mielich Jens10ORCID,Kouba Daniel4ORCID,Buresova Dalia4ORCID,Segarra Antoni7ORCID,Spogli Luca211ORCID,Rusz Jan4,Zedník Jan12

Affiliation:

1. School of Engineering Frederick University Nicosia Cyprus

2. Istituto Nazionale di Geofisica e Vulcanologia Rome Italy

3. Sapienza Università di Roma Rome Italy

4. Institute of Atmospheric Physics Czech Academy of Sciences Prague Czech Republic

5. Royal Meteorological Institute of Belgium Solar Terrestrial Centre of Excellence Brussels Belgium

6. Institute of Earth Physics and Space Science Sopron Hungary

7. Observatori de l’Ebre University Ramon Llull – CSIC Roquetes Spain

8. Space Science Laboratory University of Massachusetts Lowell Lowell MA USA

9. Kövesligethy Radó Seismological Observatory Institute of Earth Physics and Space Science Budapest Hungary

10. Leibniz‐Institute of Atmospheric Physics Kuehlungsborn Germany

11. SpaceEarth Technology Rome Italy

12. Institute of Geophysics Czech Academy of Sciences Prague Czech Republic

Abstract

AbstractIn this work, we investigate various types of ionospheric disturbances observed over Europe following the earthquake that occurred in Turkey on 6 February 2023. By combining observations from Doppler sounding systems, ionosondes, and GNSS receivers, we are able to discern different types of disturbances, propagating with different velocities and through different mechanisms. We can detect co‐seismic ionospheric disturbances close to the epicenter, as well as ionospheric signatures of acoustic waves propagating as a consequence of propagating seismic waves. Unlike the vast majority of past ionospheric co‐seismic disturbance studies that are primarily based on Total Electron Content variations, reflecting disturbances propagating around the F‐region peak, the focus of the present study is the manifestation of disturbances at different ionospheric altitudes by exploiting complementary ionospheric remote sensing techniques. This is particularly highlighted through ionospheric earthquake‐related signatures established as specific ionogram deformations known as multiple‐cusp signatures which appear as additional cusps at the base of the F‐region attributed to electron density irregularities generated by Rayleigh surface waves that generate acoustic waves propagating up to the ionosphere. Therefore this study underlines the advantage that multi‐instrument investigations offer in identifying the propagation of earthquake‐related ionospheric disturbances at different ionospheric altitudes and distances from the earthquake epicenter.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3