Comparative Analysis of Deterministic Fundamental Diagrams Representative of Continuous and Interrupted Traffic Flow on Selected Regional Road in Croatia

Author:

Jovanović Bojan1,Ševrović Marko1ORCID,Luburić Grgo1

Affiliation:

1. Department of Transport Planning, Faculty of Transport and Traffic Sciences, University of Zagreb, 10000 Zagreb, Croatia

Abstract

Since the inception of the traffic flow theory, numerous traffic flow models have been formulated by scholars in an effort to more accurately delineate the relationships between various traffic flow parameters. However, only a limited number of studies have explored the distinctions between fundamental traffic diagrams, which characterize continuous and interrupted traffic flow conditions. Addressing this research lacuna, we compared twelve “speed–density” and “flow–density” models fitted to empirical data collected under continuous and interrupted traffic flow conditions on a selected regional road in Croatia. The empirical data used to develop these models were extracted from video footage captured by an unmanned aerial vehicle on two representative road segments during characteristic peak and off-peak hours on workdays. Our analysis reveals that, depending on the selected traffic flow model and prevailing traffic flow conditions, the practical capacity of the observed regional road is estimated to be in the range from 799 to 2333 veh/h/lane. It was also discovered that the considered models reach practical capacity at a significantly different density under continuous and interrupted traffic stream conditions, i.e., between 37 and 129 veh/km/lane. The conducted t-tests underscore the need to employ distinct “speed–density” and “flow–density” regression functions for modeling continuous and interrupted traffic stream conditions.

Funder

Research Fund of the Department of Transport Planning, Faculty of Transport and Traffic Sciences, University of Zagreb, Croatia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3