Improving the Reliability of Long-Range Communication against Interference for Non-Line-of-Sight Conditions in Industrial Internet of Things Applications

Author:

Abdallah Boubaker123,Khriji Sabrine14ORCID,Chéour Rym23ORCID,Lahoud Charbel5,Moessner Klaus5ORCID,Kanoun Olfa1ORCID

Affiliation:

1. Professorship Measurement and Sensor Technology, Technische Universität Chemnitz, 09126 Chemnitz, Germany

2. Computer and Embedded Systems Laboratory, National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia

3. Higher Institute of Applied Sciences and Technology of Kasserine, University of Kairouan, Kasserine 1200, Tunisia

4. Faculty of Sciences of Gabes, University of Gabes, Gabes 6072, Tunisia

5. Professorship Communications Engineering, Technische Universität Chemnitz, 09126 Chemnitz, Germany

Abstract

LoRa technology, renowned for its low-power, long-range capabilities in IoT applications, faces challenges in real-world scenarios, including fading channels, interference, and environmental obstacles. This paper aims to study the reliability of LoRa in Non-Line-of-Sight (NLoS) conditions and in noisy and mobile environments for Industrial IoT (IIoT) applications. Experimental measurements consider factors like vegetation and infrastructure, introducing mobility to replicate NLoS conditions. Utilizing an open-source LoRa Physical Layer (PHY) Software-Defined Radio (SDR) prototype developed with GNU Radio, we assess communication reliability through metrics such as Block Error Rate (BLER), Signal-to-Noise-Interference-plus-Noise Ratio (SINR), and data rate. The study reveals the estimated overall reliability of the LoRa signal at 90.23%, emphasizing specific configuration details. This work contributes to the broader field of LoRa communication, encompassing hardware, software, protocols, and management, enhancing our understanding of LoRa’s dependability in challenging IIoT environments.

Funder

Wandel durch Innovation in der Region (WIR)!—Change through Innovation in the Region

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3