Abstract
Advanced sensors are becoming essential for modern factories, as they contribute by gathering comprehensive data about machines, processes, and human-machine interaction. They play an important role in improving manufacturing performance, in-factory logistics, predictive maintenance, supply chains, and digitalization in general. Wireless sensors and wireless sensor networks (WSNs) provide, in this context, significant advantages as they are flexible and easily deployable. They have reduced installation and maintenance costs and contributed by reducing cables and preinstalled infrastructure, leading to improved reliability. WSNs can be retrofitted in machines to provide direct information from inside the processes. Recent developments have revealed exciting possibilities to enhance energy harvesting (EH) and wireless energy transmission, enabling a reliable use of wireless sensors in smart factories. This review provides an overview of the potential of energy aware WSNs for industrial applications and shows relevant techniques for realizing a sustainable energy supply based on energy harvesting and energy transfer. The focus is on high-performance converter solutions and improvement of frequency, bandwidth, hybridization of the converters, and the newest trends towards flexible converters. We report on possibilities to reduce the energy consumption in wireless communication on the node level and on the network level, enabling boosting network efficiency and operability. Based on the existing technologies, energy aware WSNs can nowadays be realized for many applications in smart factories. It can be expected that they will play a great role in the future as an enabler for digitalization in this decisive economic sector.
Funder
European Union and Saxon State Ministry for Science, Culture and Tourism
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献