High-Noise Grayscale Image Denoising Using an Improved Median Filter for the Adaptive Selection of a Threshold

Author:

Cao Ning1,Liu Yupu1

Affiliation:

1. College of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

Abstract

Grayscale image processing is a key research area in the field of computer vision and image analysis, where image quality and visualization effects may be seriously damaged by high-density salt and pepper noise. A traditional median filter for noise removal may result in poor detail reservation performance under strong noise and the judgment performance of different noise characteristics has strong dependence and rather weak robustness. In order to reduce the effects of high-density salt and pepper noise on image quality when processing high-noise grayscale images, an improved two-dimensional maximum Shannon entropy median filter (TSETMF) is proposed for the adaptive selection of a threshold to enhance the filter performance while stably and effectively retaining the details of the images. The framework of the proposed improved TSETMF algorithm is designed in detail. The noise in images is filtered by means of automatically partitioning a window size, the threshold value of which is adaptively calculated using two-dimensional maximum Shannon entropy. The theoretical model is verified and analyzed through comparative experiments using three kinds of classical grayscale images. The experimental results demonstrate that the proposed improved TSETMF algorithm exhibits better processing performance than that of the traditional filter, with a higher suppression of high-density noise and denoising stability. This stronger ability while processing high-density noise is demonstrated by a higher peak signal-to-noise ratio (PSNR) of 24.97 dB with a 95% noise density located in the classical Lena grayscale image. The better denoising stability, with a noise density from 5% to 95%, is demonstrated by the minor decline in the PSNR of approximately 10.78% relative to a PSNR of 23.10 dB located in the classical Cameraman grayscale image. Furthermore, it can be advanced to promote higher noise filtering and stability for processing high-density salt and pepper noise in grayscale images.

Funder

Key Science and Technology Research Project of Henan Province

Doctoral Research Fund of Zhengzhou University of Light Industry

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3