Image Denoising Using a Compressive Sensing Approach Based on Regularization Constraints

Author:

Mahdaoui Assia ElORCID,Ouahabi AbdeldjalilORCID,Moulay Mohamed Said

Abstract

In remote sensing applications and medical imaging, one of the key points is the acquisition, real-time preprocessing and storage of information. Due to the large amount of information present in the form of images or videos, compression of these data is necessary. Compressed sensing is an efficient technique to meet this challenge. It consists in acquiring a signal, assuming that it can have a sparse representation, by using a minimum number of nonadaptive linear measurements. After this compressed sensing process, a reconstruction of the original signal must be performed at the receiver. Reconstruction techniques are often unable to preserve the texture of the image and tend to smooth out its details. To overcome this problem, we propose, in this work, a compressed sensing reconstruction method that combines the total variation regularization and the non-local self-similarity constraint. The optimization of this method is performed by using an augmented Lagrangian that avoids the difficult problem of nonlinearity and nondifferentiability of the regularization terms. The proposed algorithm, called denoising-compressed sensing by regularization (DCSR) terms, will not only perform image reconstruction but also denoising. To evaluate the performance of the proposed algorithm, we compare its performance with state-of-the-art methods, such as Nesterov’s algorithm, group-based sparse representation and wavelet-based methods, in terms of denoising and preservation of edges, texture and image details, as well as from the point of view of computational complexity. Our approach permits a gain up to 25% in terms of denoising efficiency and visual quality using two metrics: peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3