Abstract
Alzheimer’s disease is characterized by a progressive deterioration of neurons resulting in a steady loss of cognitive functions and memory. Many treatments encounter the challenge of overcoming the blood–brain barrier, thus the intranasal route is a non-invasive effective alternative that enhances the drug delivery in the target organ–the brain–and reduces the side effects associated with systemic administration. This study aimed at developing intranasal gels of donepezil as an approach to Alzheimer’s disease. Three different gels were elaborated and characterized in terms of pH, morphology, gelation temperature, rheology, and swelling. An in vitro release study and an ex vivo permeation in porcine nasal mucosa were conducted on Franz diffusion cells. The tolerability of the formulations was determined by the cytotoxicity in human nasal cells RPMI 2650. Results showed that pluronic gels exhibit the higher release rate and enhanced permeation compared to chitosan gel. Moreover, the combination of Pluronic F-127 and Transcutol® P exerted a synergic effect on the permeation of donepezil through the nasal mucosa. The resulting gels showed suitable tolerance in the RPMI 2650 cell line and physicochemical characteristics for intranasal delivery, and thus gel formulations administered by nasal mucosa could be an alternative strategy to improve the bioavailability of donepezil.
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献