Cobalt- and Copper-Based Chemiresistors for Low Concentration Methane Detection, a Comparison Study

Author:

Chesler PaulORCID,Hornoiu CristianORCID,Anastasescu MihaiORCID,Calderon-Moreno Jose Maria,Gheorghe MarinORCID,Gartner Mariuca

Abstract

Methane is a colorless/odorless major greenhouse effect gas, which can explode when it accumulates at concentrations above 50,000 ppm. Its detection cannot be performed without specialized equipment, namely sensing devices. A series of MOX sensors (chemiresistors type), with CoO and CuO sensitive films were obtained using an eco-friendly and low-cost deposition technique (sol–gel). The sensing films were characterized using AFM and SEM as thin film. The transducers are based on an alumina wafer, with Au or Pt interdigital electrodes (IDE) printed onto the alumina surface. The sensor response was recorded upon sensor exposure to different methane concentrations (target gas) under lab conditions (dried target and carrier gas from gas cylinders), in a constant gas flow, with target gas concentrations in the 5–2000 ppm domain and a direct current (DC) applied to the IDE as sensor operating voltage. Humidity and cross-sensitivity (CO2) measurements were performed, along with sensor stability measurements, to better characterize the obtained sensors. The obtained results emphasize good 3-S sensor parameters (sensitivity, partial selectivity and stability) and also short response time and complete sensor recovery, completed by a low working temperature (220 °C), which are key factors for further development of a new commercial chemiresistor for methane detection.

Funder

Romanian National Authority for Scientific Research on Innovation, CCCDI-UEFISCDI

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Reference22 articles.

1. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. (2022, October 01). Available online: http://medbox.iiab.me/modules/en-cdc/www.cdc.gov/niosh/ipcsneng/neng0291.html.

3. Surface Properties of Germanium;Bell Syst. Tech. J.,1953

4. Taguchi, N. (1972). Gas Detecting Device. (3,695,848 A), U.S. Patent.

5. Slab Waveguide with Air Core Layer and Anisotropic Left-Handed Material Claddings as a Sensor;Opto-Electron. Rev.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3