Facile Construction of Hybrid Hydrogels with High Strength and Biocompatibility for Cranial Bone Regeneration

Author:

Chang ShuaiORCID,Wang Jiedong,Xu Nanfang,Wang Shaobo,Cai Hong,Liu Zhongjun,Wang Xing

Abstract

The significant efforts being made towards the utilization of artificial soft materials holds considerable promise for developing tissue engineering scaffolds for bone-related diseases in clinics. However, most of these biomaterials cannot simultaneously satisfy the multiple requirements of high mechanics, good compatibility, and biological osteogenesis. In this study, an osteogenic hybrid hydrogel between the amine-functionalized bioactive glass (ABG) and 4-armed poly(ethylene glycol) succinimidyl glutarate-gelatin network (SGgel) is introduced to flexibly adhere onto the defective tissue and to subsequently guide bone regeneration. Relying on the rapid ammonolysis reaction between amine groups (-NH2) of gelatin and ABG components and N-hydroxysuccinimide (NHS)-ester of tetra-PEG-SG polymer, the hydrogel networks were formed within seconds, offering a multifunctional performance, including easy injection, favorable biocompatibility, biological and mechanical properties (compressive strength: 4.2 MPa; storage modulus: 104 kPa; adhesive strength: 56 kPa), which could facilitate the stem cell viability, proliferation, migration and differentiation into osteocytes. In addition, the integration between the SGgel network and ABG moieties within a nano-scale level enabled the hybrid hydrogel to form adhesion to tissue, maintain the durable osteogenesis and accelerate bone regeneration. Therefore, a robust approach to the simultaneously satisfying tough adhesion onto the tissue defects and high efficiency for bone regeneration on a mouse skull was achieved, which may represent a promising strategy to design therapeutic scaffolds for tissue engineering in clinical applications.

Funder

Youth Innovation Promotion Association

National Natural Science Foundation of China

Ministry of Science and Technology of the People’s Republic of China

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3