Measurement of the Imaginary Part of the Clausius-Mossotti Factor of Particle/Cell via Dual Frequency Electrorotation

Author:

Lin Yung-Yi,Lo Ying-Jie,Lei UORCID

Abstract

A simple and inexpensive method using planar electrodes was proposed for the measurement of the imaginary part of the Clausius-Mossotti factor, K i , of particle/cell for electrorotation (ER) and travelling wave dielectrophoresis (twDEP). It is based on the balance between the dielectrophoretic and viscous torques on a particle undergoing ER subject to dual frequency operation in an ER chamber. A four-phase ac voltage signal with a given frequency is applied for generating ER for measurement, and another two-phase signal is applied at a selected frequency for generating a negative dielectrophoretic force for confining the particle motion, instead of using laser tweezer or three-dimensional electrodes in the literature. Both frequencies can be applied to the same electrodes in a four-electrode ER system and to alternative different electrodes in an eight-electrode ER system, and both systems are capable for providing accurate measurement. The measurements were validated by comparing with the theoretical result using sephadex particles in KCl solution, and with the existing experimental results for various human cancer cells in medium with conductivity from 0.01–1.2 S/m, using ER with optical tweezer and dual frequency twDEP. Contrast between the ER and the twDEP methods (the current two available methods) was discussed and commented. The present method could provide measurement for wider frequency range and more accurate result near K i = 0, in comparison with the results using the twDEP method. However, the twDEP method could perform much more rapid measurement. Detailed forces and torque were calculated inside the ER chamber for understanding the physics and assessing the characteristics of the dual frequency ER method. This study is of academic interest as the torque in ER and the force in twDEP can be calculated only when K i is known. It also finds biomedical applications as the K i -spectra can be served as physical phenotypes for different cells, and can be applied for deriving dielectric properties of cells.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference41 articles.

1. Dielectrophoresis;Pohl,1978

2. Electromechanics of Particles;Jones,1995

3. Nanoelectromechanics in Engineering and Biology;Hughes,2002

4. Dielectrophoresis: Theory, Methodology and Biological Applications;Pethig,2017

5. Measurement of the Clausius-Mossotti factor of generalized dielectrophoresis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3