Influence of Molding Technology on Thermal Efficiencies and Pollutant Emissions from Household Solid Fuel Combustion during Cooking Activities in Chinese Rural Areas

Author:

Qi Juan,Wu Jianjun,Zhang Lei

Abstract

Resident combustion of solid fuel has been widely acknowledged as a high potential for pollutant reduction. However, there is a marked asymmetry between more pollutant emission and less burned volatiles of biomass and coal in the combustion process. To study the solid fuel optimum combustion form in a household stove, both the pollution reduction and energy efficient utilization of crop straws and coals were investigated. Taking the molding pressure and clay addition ratio as variable process conditions, the research of bio-coal briquette (made from the mixture of anthracite and biomass) was implemented in the range of 15~35 MP and 5~15%, respectively. Biomass and coal work complementarily for each other’s combustion property development. In particular, the pyrolysis gas produced by biomass low-temperature devolatilization is featured with low ignition point and is distributed in the bio-coal briquette. Its own combustion provides energy for anthracite particle combustion. Consequently, a positive effect was identified when bio-coal briquettes were used as residential fuel, and further improvement manifested in reducing more than 90% of particle matter (PM) and achieving about twice the thermal efficiencies (TEs) compared with the mass-weighted average values of coal briquettes and biomass briquettes. 88.8 ± 11.8%, 136.7 ± 13.7% and 81.4 ± 17.7% more TEs were provided by wheat straw–coal briquettes, rice straw–coal briquettes and maize straw–coal briquettes. 93.3 ± 3.1% (wheat straw–coal), 97.6 ± 0.2% (rice straw–coal) and 90.4 ± 2.2% (maize straw–coal) in terms of PM2.5 emission factors (EFs) was reduced. For bio-coal briquette, a 25 MPa and 10% addition were determined as the optimum molding pressure and clay addition ratio. Bio-coal briquettes with higher TEs and lower PM EFs will bring about substantial benefits for air quality promotion, human health and energy saving.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3