Implementing Very-Short-Term Forecasting of Residential Load Demand Using a Deep Neural Network Architecture

Author:

Gonzalez Reynaldo1ORCID,Ahmed Sara1ORCID,Alamaniotis Miltiadis1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA

Abstract

The need for and interest in very-short-term load forecasting (VSTLF) is increasing and important for goals such as energy pricing markets. There is greater challenge in predicting load consumption for residential-load-type data, which is highly variable in nature and does not form visible patterns present in aggregated nodal-type load data. Previous works have used methods such as LSTM and CNN for VSTLF; however, the use of DNN has yet to be investigated. Furthermore, DNNs have been effectively used in STLF but have not been applied to very-short-term time frames. In this work, a deep network architecture is proposed and applied to very-short-term forecasting of residential load patterns that exhibit high variability and abrupt changes. The method extends previous work by including delayed load demand as an input, as well as working for 1 min data resolution. The deep model is trained on the load demand data of selected days—one, two, and a week—prior to the targeted day. Test results on real-world residential load patterns encompassing a set of 32 days (a sample from different seasons and special days) exhibit the efficiency of the deep network in providing high-accuracy residential forecasts, as measured with three different error metrics, namely MSE, RMSE, and MAPE. On average, MSE and RMSE are lower than 0.51 kW and 0.69 kW, and MAPE lower than 0.51%.

Funder

CPS Energy

University of Texas at San Antonio

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3