Green Synthesis of Lead Sulphide Nanoparticles for High-Efficiency Perovskite Solar Cell Applications

Author:

Islam Mohammad AminulORCID,Sarkar Dilip Kumar,Shahinuzzaman Md.ORCID,Wahab Yasmin AbdulORCID,Khandaker Mayeen UddinORCID,Tamam NissrenORCID,Sulieman AbdelmoneimORCID,Amin NowshadORCID,Akhtaruzzaman Md.ORCID

Abstract

In this study, lead sulfide (PbS) nanoparticles were synthesized by the chemical precipitation method using Aloe Vera extract with PbCl2 and Thiourea (H2N-CS-NH2). The synthesized nanoparticles have been investigated using x-ray diffraction (XRD), UV-Vis, energy-dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD and TEM results confirm that the films are in the cubic phase. The crystallite size, lattice constant, micro-strain, dislocation density, optical bandgap, etc. have been determined using XRD and UV-Vis for investigating the quality of prepared nanoparticles. The possible application of these synthesized nanoparticles in the solar cells was investigated by fabricating the thin films on an FTO-coated and bare glass substrate. The properties of nanoparticles were found to be nearly retained in the film state as well. The experimentally found properties of thin films have been implemented for perovskite solar cell simulation and current-voltage and capacitance-voltage characteristics have been investigated. The simulation results showed that PbS nanoparticles could be a potential hole transport layer for high-efficiency perovskite solar cell applications.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3