Affiliation:
1. Department of Chemistry Faculty of Science University of Sialkot Sialkot 51310 Pakistan
2. Department of Chemistry Faculty of Science University of Gujrat Hafiz Hayat Campus Gujrat 50700 Pakistan
3. Department of Chemistry Faculty of Science University of Engineering and Technology Lahore Pakistan
4. Department of Physics Faculty of Science University of Sialkot Sialkot 51310 Pakistan
Abstract
AbstractIn this study, we have reported the synthesis of both pure and bismuth‐doped lead oxide nanoparticles using solvothermal method. The synthesized nanomaterials were analyzed to assess their structure, crystallinity, phase, maximum absorption and band gap. The electrical characteristics of the fabricated nanostructures were evaluated using cyclic voltammetry (CV) and electron impedance spectroscopy (EIS). The maximum specific capacitance and energy density, 349.96 F/g and 95.27 Wh/g respectively, were attained at a scan rate of 200 mV/s in pure lead oxide. The synthesized pure lead oxide has displayed remarkable cyclic stability, retaining approximately 83 % of its performance even after undergoing 2000 cycles. The addition of bismuth to the lead oxide appeared to inhibit the electrochemical properties of lead oxide due to bismuth ion adsorption. This effect is directly concerned with the amount of dopant which predicted the increase in bismuth contents potentially suppressed the performance of the lead oxide. Our study provides insights into the possible uses of lead oxides in energy storage and conversion devices by revealing a previously unexplored method for optimizing their electrochemical characteristics. The understanding of oxide‐based materials in materials science and electrochemistry is expected to advance with the use of this novel technology.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献