The Influence of 3D Printing Core Construction (Binder Jetting) on the Amount of Generated Gases in the Environmental and Technological Aspect

Author:

Bobrowski Artur1ORCID,Woźniak Faustyna1,Żymankowska-Kumon Sylwia1ORCID,Kaczmarska Karolina1ORCID,Grabowska Beata1ORCID,Dereń Michał1,Żuchliński Robert2

Affiliation:

1. Faculty of Foundry Engineering, AGH University of Krakow, Reymonta 23 Str., 30-059 Kraków, Poland

2. Bydgoszcz Cast Iron Foundry, Zygmunta Augusta 11 Str., 85-082 Bydgoszcz, Poland

Abstract

This article presents the findings of a study focusing on the gas generation of 3D-printed cores fabricated using binder-jetting technology with furfuryl resin. The research aimed to compare gas emission levels, where the volume generated during the thermal degradation of the binder significantly impacts the propensity for gaseous defects in foundries. The study also investigated the influence of the binder type (conventional vs. 3D-printed dedicated binder) and core construction (shell core) on the quantity of gaseous products from the BTEX group formed during the pouring of liquid foundry metal into the cores. The results revealed that the emitted gas volume during the thermal decomposition of the organic binder depended on the core sand components and binder type. Cores produced using conventional methods emitted the least gases due to lower binder content. Increasing Kaltharz U404 resin to 1.5 parts by weight resulted in a 37% rise in gas volume and 27% higher benzene emission. Adopting shell cores reduced gas volume by over 20% (retaining sand with hardener) and 30% (removing sand with hardener), presenting an eco-friendly solution with reduced benzene emissions and core production costs. Shell cores facilitated the quicker removal of gaseous binder decomposition products, reducing the likelihood of casting defects. The disparity in benzene emissions between 3D-printed and vibratory-mixed solid cores is attributed to the sample preparation process, wherein 3D printing ensured greater uniformity.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3