Investigation on the Micro Cutting Mechanism and Surface Topography Generation in Ultraprecision Diamond Turning

Author:

Wu Quanhui,Chen GuodaORCID,Liu Qinglin,Pan Baisong,Chen Wanqun

Abstract

Revealing forming mechanism of workpiece surface topography plays an important role in improving ultraprecision turning. In this paper, the forming mechanism of the turning workpiece surface topography is analyzed and verified by the theoretical simulation and experiment respectively. First, the factors directly related to the turning process are analyzed, and a volumetric error model is built and discussed, which considered geometric errors, tool geometry, spindle vibrations, feed rate, cut depth, and feed system position change. The vibration mechanism and laws of the spindle system under multi-field coupling is analyzed, and the effect of the spindle axial vibration on the turning surface topography is studied. In addition, influence of coupled vibrations on the turning surface texture is analyzed, and an equivalent machining model is constructed to identify crucial geometric errors of the workpiece surface topography. Finally, a homemade ultraprecision machine tool system is built and used for turning the workpiece surface, and the tested results of the surface topography demonstrate Ra is better, 10 nm and Rv is better, 20 nm. The end face of the workpiece forms periodically fluctuating wave and ripple patterns, and the comparison between theoretical analysis and experimental detection of the surface topography is verified.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3