Theoretical and Experimental Investigation of Surface Textures in Vibration-Assisted Micro Milling

Author:

Song Bowen1ORCID,Zhang Dawei1,Jing Xiubing1ORCID,Ren Yingying1,Chen Yun2ORCID,Li Huaizhong3ORCID

Affiliation:

1. Key Laboratory of Equipment Design and Manufacturing Technology, Tianjin University, Tianjin 300072, China

2. Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China

3. School of Engineering & Built Environment, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia

Abstract

Vibration-assisted micro milling is a promising technique for fabricating engineered mi-cro-scaled surface textures. This paper presents a novel approach for theoretical modeling of three-dimensional (3D) surface textures produced by vibration-assisted micro milling. The proposed model considers the effects of tool edge geometry, minimum uncut chip thickness (MUCT), and material elastic recovery. The surface texture formation under different machining parameters is simulated and analyzed through mathematical modeling. Two typical surface morphologies can be generated: wave-type and fish scale-type textures, depending on the phase difference between tool paths. A 2-degrees-of-freedom (2-DOF) vibration stage is also developed to provide vibration along the feed and cross-feed directions during micro-milling process. Micro-milling experiments on copper were carried out to verify the ability to fabricate controlled surface textures using the vibration stage. The simulated and experimentally generated surfaces show good agreement in geometry and dimensions. This work provides an accurate analytical model for vibration-assisted micro-milling surface generation and demonstrates its feasibility for efficient, flexible texturing.

Funder

Program of Tianjin Science and Technology

Program of Ministry of Industry and Information Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3