Superconducting Accelerator Magnets Based on High-Temperature Superconducting Bi-2212 Round Wires

Author:

Shen Tengming,Garcia Fajardo LauraORCID

Abstract

Superconducting magnets are an invaluable tool for scientific discovery, energy research, and medical diagnosis. To date, virtually all superconducting magnets have been made from two Nb-based low-temperature superconductors (Nb-Ti with a superconducting transition temperature Tc of 9.2 K and Nb3Sn with a Tc of 18.3 K). The 8.33 T Nb-Ti accelerator dipole magnets of the large hadron collider (LHC) at CERN enabled the discovery of the Higgs Boson and the ongoing search for physics beyond the standard model of high energy physics. The 12 T class Nb3Sn magnets are key to the International Thermonuclear Experimental Reactor (ITER) Tokamak and to the high-luminosity upgrade of the LHC that aims to increase the luminosity by a factor of 5–10. In this paper, we discuss opportunities with a high-temperature superconducting material Bi-2212 with a Tc of 80–92 K for building more powerful magnets for high energy circular colliders. The development of a superconducting accelerator magnet could not succeed without a parallel development of a high performance conductor. We will review triumphs of developing Bi-2212 round wires into a magnet grade conductor and technologies that enable them. Then, we will discuss the challenges associated with constructing a high-field accelerator magnet using Bi-2212 wires, especially those dipoles of 15–20 T class with a significant value for future physics colliders, potential technology paths forward, and progress made so far with subscale magnet development based on racetrack coils and a canted-cosine-theta magnet design that uniquely addresses the mechanical weaknesses of Bi-2212 cables. Additionally, a roadmap being implemented by the US Magnet Development Program for demonstrating high-field Bi-2212 accelerator dipole technologies is presented.

Funder

U.S. Department of Energy

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3