Density dependent constitutive model for Bi-2212 powder compression deformation

Author:

Liu Xueqian,Gao Yang,Li HengORCID,Yang Yanfeng,Zhang ShengnanORCID,Jiang Lang,Zhang Yifan,Hao Qingbin,Li Jianfeng,Li Chengshan,Zhang Pingxiang

Abstract

Abstract Bi-2212 HTS materials are fabricated into multi-filamentary wires via powder-in-tube (PIT) method followed by proper heat treatment to obtain superconductivity, but how to predict the large compression deformation behaviors of the Bi-2212 powder is critical to design the processing of the Bi-2212 HTS wire. Drucker Prager/Cap (DPC) model was the most commonly used model for powders including Bi-2212 with soil-like mechanical behavior to consider its shear failure as well as hydrostatic compression. However, the parameters for DPC Cap evolve with densities change and the original model is inadequate to precisely describe the densification process of Bi-2212 powder with large strain. In this study, the modified DPC model with density dependent parameters was introduced for Bi-2212 powder compressions by measuring the failure strength and hydrostatic compressive behavior under different density states. The DPC yield surface was plotted with an evolution trend of non-linear outward expansion with density increased. FEM model of uniaxial compression based on the as-introduced model was built with subroutine VUSDFLD applied. The distribution of Mises stress and relative density were analyzed. The axial stress-density curve for FEM and experimental results were normalized and quantitively evaluated by Mean Square Error (MSE). The introduced model shows good convergence and could match the experimental results well with normalized MSE of 0.000207 and Root Mean Square Error (RMSE) of 0.0144, indicating the mean error percentage of 1.44%. The model introduced in this article provides supports toward large strain deformation simulation of Bi-2212 powder.

Funder

Shaanxi Natural Science Foundation Project

Northwest Institute of Non-ferrous Metal Research Funding

National Natural Science Foundation of China

Research and Development Program of China

Publisher

IOP Publishing

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3