Influence of twist pitch on hysteretic losses and transport J c in overpressure processed high J c Bi-2212 round wires

Author:

Oz YORCID,Davis DORCID,Jiang JORCID,Hellstrom E EORCID,Larbalestier D CORCID

Abstract

Abstract Bi-2212 is the only high field, high-temperature superconductor (HTS) available in the macroscopically isotropic, multifilament high J c round wire (RW) form capable of generating high uniformity fields with minimum-screening current errors. However, the heat treatment that enables impressively high J c (4.2 K, 30 T) values that can attain ∼5000 A mm−2 also produces significant filament bonding (bridging). Filament bridging appears to significantly enhance hysteretic losses of the filaments themselves by coupling neighboring, nominally independent filaments, enabling shielding currents to flow across multiple filaments as though they were one filament of much larger diameter. Wire twisting can be employed to reduce filament-to-filament eddy current coupling losses due to induced currents flowing across the matrix, but twisting is less effective in reducing increased losses from bridging. Here, we compare the twist-pitch dependence of the losses of overpressure processed (OP) high J c Bi-2212 RWs with partially bridged filaments to those found in OP Bi-2212 RWs with discrete, not-bridged filaments. We show that filament sub-bundles in standard, partially-bridged wires that have some superconducting connections between filaments can exhibit significant coupling (much larger effective filament diameter), but twisting still reduces their hysteretic losses to values close to or below the ITER Nb3Sn wire loss specification, even though Bi-2212 wires have significantly larger J c values. Although it has been reported that twisting can reduce wire J c by damaging filaments, we found no reduction in transport J c , even for nominal twist pitches of 12 mm in 0.8 mm diameter wires. Evaluation of more-recent, higher J c Engi-Mat powder wires showed that their reduced filament bridging and improved longitudinal connectivity significantly improved transport J c and reduced the J c normalized losses, signaling that J c can be further improved without commensurate increase in losses. This important result strengthens the argument for production of high field, low loss HTS magnets made with Bi-2212 RWs.

Funder

NSF

State of Florida

U.S. Magnet Development Program

High Energy Physics

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3