RF Design and Measurements of a C-Band Prototype Structure for an Ultra-High Dose-Rate Medical Linac

Author:

Giuliano Lucia12ORCID,Bosco Fabio12ORCID,Carillo Martina12,Felici Giuseppe3ORCID,Ficcadenti Luca12,Mostacci Andrea12,Migliorati Mauro12ORCID,Palumbo Luigi12,Spataro Bruno4ORCID,Faillace Luigi4

Affiliation:

1. SBAI Department, Sapienza University of Rome, 00185 Roma, Italy

2. INFN Sezione di Roma, 00185 Roma, Italy

3. SIT—Sordina IORT Technology S.p.A., 36100 Vicenza, Italy

4. INFN Laboratori Nazionali di Frascati, 00044 Frascati, Italy

Abstract

In this paper, we illustrate the RF design and measurements of a C-band prototype structure for an Ultra High Dose Rate medical linac. (1) Background: FLASH Radiotherapy (RT) is a revolutionary new technique for cancer cure. It releases ultra-high radiation dose rates (above 100 Gy/s) in microsecond short pulses. In order to obtain a high dose in a very short time, accelerators with high-intensity currents (the order of 100 mA peak currents) have to be developed. In this contest, Sapienza University, in collaboration with SIT-Sordina IORT Technology spa, is developing a new C-band linac to achieve the FLASH regime. (2) Methods: We performed the RF electromagnetic design of the prototype of the C band linac using CST STUDIO Suite Code and the RF low power RF test at Sapienza University of Rome. The measurements of the field in the cavity have been done with the bead-pull technique. (3) Results: This device is a nine-cell structure operating on the π/2 mode at 5.712 GHz (C-band). We report and discuss the test measurement results on a full-scale copper prototype, showing good agreement with CST RF simulations. A tuning procedure has been implemented in order to ensure proper operating frequency and to reach a field profile flatness of the order of a few percent. (4) Conclusions: The prototype of a C-band linac for FLASH applications was successfully tested with low RF power at Sapienza University. The fabrication and ad hoc tuning procedures have been optimized and discussed in the paper.

Publisher

MDPI AG

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Test of C-band Linac Prototypes for Electron FLASH Radiotherapy;Journal of Physics: Conference Series;2024-01-01

2. Design of RF cavity test module for electron accelerator with magnetron 2.45 GHz;Journal of Physics: Conference Series;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3