Transcriptome Analysis Reveals the Role of Sucrose in the Production of Latilactobacillus sakei L3 Exopolysaccharide

Author:

Wang Binbin12,Wu Baomei1ORCID,Xu Min2,Zuo Kaiyue1,Han Ye2,Zhou Zhijiang2

Affiliation:

1. School of Life Sciences, Shanxi Normal University, Taiyuan 030000, China

2. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Abstract

Latilactobacillus (L.) sakei is a species of lactic acid bacteria (LAB) mostly studied according to its application in food fermentation. Previously, L. sakei L3 was isolated by our laboratory and possessed the capability of high exopolysaccharide (EPS) yield during sucrose-added fermentation. However, the understanding of sucrose promoting EPS production is still limited. Here, we analyzed the growth characteristics of L. sakei L3 and alterations of its transcriptional profiles during sucrose-added fermentation. The results showed that L. sakei L3 could survive between pH 4.0 and pH 9.0, tolerant to NaCl (<10%, w/v) and urea (<6%, w/v). Meanwhile, transcriptomic analysis showed that a total of 426 differentially expressed genes and eight non-coding RNAs were identified. Genes associated with sucrose metabolism were significantly induced, so L. sakei L3 increased the utilization of sucrose to produce EPS, while genes related to uridine monophosphate (UMP), fatty acids and folate synthetic pathways were significantly inhibited, indicating that L. sakei L3 decreased self-growth, substance and energy metabolism to satisfy EPS production. Overall, transcriptome analysis provided valuable insights into the mechanisms by which L. sakei L3 utilizes sucrose for EPS biosynthesis. The study provided a theoretical foundation for the further application of functional EPS in the food industry.

Funder

National Natural Science Foundation of China

Basic Research Program of Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3