Wave Equation Modeling via Physics-Informed Neural Networks: Models of Soft and Hard Constraints for Initial and Boundary Conditions

Author:

Alkhadhr Shaikhah12ORCID,Almekkawy Mohamed1ORCID

Affiliation:

1. School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park, PA 16802, USA

2. Information Science Department, Sabah AlSalem University City, Kuwait University, P.O. Box 25944, Safat 1320, Kuwait

Abstract

Therapeutic ultrasound waves are the main instruments used in many noninvasive clinical procedures. They are continuously transforming medical treatments through mechanical and thermal effects. To allow for effective and safe delivery of ultrasound waves, numerical modeling methods such as the Finite Difference Method (FDM) and the Finite Element Method (FEM) are used. However, modeling the acoustic wave equation can result in several computational complications. In this work, we study the accuracy of using Physics-Informed Neural Networks (PINNs) to solve the wave equation when applying different combinations of initial and boundary conditions (ICs and BCs) constraints. By exploiting the mesh-free nature of PINNs and their prediction speed, we specifically model the wave equation with a continuous time-dependent point source function. Four main models are designed and studied to monitor the effects of soft or hard constraints on the prediction accuracy and performance. The predicted solutions in all the models were compared to an FDM solution for prediction error estimation. The trials of this work reveal that the wave equation modeled by a PINN with soft IC and BC (soft–soft) constraints reflects the lowest prediction error among the four combinations of constraints.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3