Optimization of Architectural Form for Thermal Comfort in Naturally Ventilated Gymnasium at Hot and Humid Climate by Orthogonal Experiment

Author:

Huang Xiaodan,Zhang Qingyuan,Tanaka Ineko

Abstract

As the gymnasiums in subtropical region with hot and humid climate are naturally ventilated during non-competition periods, occupants exercising indoors often feel uncomfortable, especially in summer. In order to provide thermally comfortable and healthy environment for the occupants, the design on architectural form is found to be an effective solution on improving indoor thermal comfort of naturally ventilated gymnasiums. Therefore, a new perspective regarding optimization of naturally ventilated gymnasiums is proposed in the aspect of the architectural form. This paper presents the optimization of architectural form in naturally ventilated gymnasiums in which simulation and orthogonal experiment methods are combined. Through numerical simulation with FlowDesigner software, the significance of architectural form affecting indoor thermal comfort has been given, and the optimal architectural forms of naturally ventilated gymnasium are determined. The results show that the roof insulation type is the most significant factor influencing indoor thermal comfort; thus, it should be considered primarily in optimization. Moreover, the range analysis and variance analysis reveal the rankings of the factors for the gymnasium thermal comfort. In addition, it is demonstrated that the optimal gymnasium model, when compared with the initial gymnasium model, has a satisfactory effect on improving the indoor thermal comfort, as the average value of Predicted Thermal Sensation (PTS) in August decreased from 1.11 (Slightly hot) to 0.86 (Comfortable). This study provides a new insight for the designers in optimizing the architectural form of gymnasiums for achieving the indoor thermal comfort at hot and humid climate.

Funder

Youth Foundation of Guangdong University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference42 articles.

1. Outdoor thermal comfort and outdoor activities: A review of research in the past decade

2. The effect of personal and microclimatic variables on outdoor thermal comfort: A field study in a cold season in Lujiazui CBD, Shanghai

3. ASHRAE Standard 55-2020,2020

4. Chapter 9, Thermal Comfort, ASHRAE Handbook—Fundamentals,2017

5. Towards an adaptive model of thermal comfort and preference;De Dear;ASHRAE Trans.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3