An Adaptive Prescribed Performance Tracking Motion Control Methodology for Robotic Manipulators with Global Finite-Time Stability

Author:

Vo Anh TuanORCID,Truong Thanh NguyenORCID,Kang Hee-JunORCID

Abstract

In this paper, the problem of an APPTMC for manipulators is investigated. During the robot’s operation, the error states should be kept within an outlined range to ensure a steady-state and dynamic attitude. Firstly, we propose the modified PPFs. Afterward, a series of transformed errors is used to convert “constrained” systems into equivalent “unconstrained” ones, to facilitate control design. The modified PPFs ensure position tracking errors are managed in a pre-designed performance domain. Especially, the SSE boundaries will be symmetrical to zero, so when the transformed error is zero, the tracking error will be as well. Secondly, a modified NISMS based on the transformed errors allows for determining the highest acceptable range of the tracking errors in the steady-state, finite-time convergence index, and singularity elimination. Thirdly, a fixed-time USOSMO is proposed to directly estimate the lumped uncertainty. Fourthly, an ASTwCL is applied to deal with observer output errors and chattering. Finally, an observer-based-control solution is synthesized from the above techniques to achieve PCP in the sense of finite-time Lyapunov stability. In addition, the precision, robustness, as well as harmful chattering reduction of the proposed APPTMC are improved significantly. The Lyapunov theory is used to analyze the stability of closed-loop systems. Throughout simulations, the proposed PPTMC has been shown to perform well and be effective.

Funder

National Research Foundation of Korea (NRF) funded by the Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference52 articles.

1. Industrial Robot Applications;Appleton,2012

2. Introduction to Robotics: Mechanics and Control;Craig,2005

3. A tuning procedure for stable PID control of robot manipulators

4. On the PID tracking control of robot manipulators

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3