Non-Absorbing Dielectric Materials for Surface-Enhanced Spectroscopies and Chiral Sensing in the UV

Author:

Rosales Saúl A.,González Francisco,Moreno FernandoORCID,Gutiérrez YaelORCID

Abstract

Low-loss dielectric nanomaterials are being extensively studied as novel platforms for enhanced light-matter interactions. Dielectric materials are more versatile than metals when nanostructured as they are able to generate simultaneously electric- and magnetic-type resonances. This unique property gives rise to a wide gamut of new phenomena not observed in metal nanostructures such as directional scattering conditions or enhanced optical chirality density. Traditionally studied dielectrics such as Si, Ge or GaP have an operating range constrained to the infrared and/or the visible range. Tuning their resonances up to the UV, where many biological samples of interest exhibit their absorption bands, is not possible due to their increased optical losses via heat generation. Herein, we report a quantitative survey on the UV optical performance of 20 different dielectric nanostructured materials for UV surface light-matter interaction based applications. The near-field intensity and optical chirality density averaged over the surface of the nanoparticles together with the heat generation are studied as figures of merit for this comparative analysis.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3