Synthesis and Study of Palladium Mono- and Bimetallic (with Ag and Pt) Nanoparticles in Catalytic and Membrane Hydrogen Processes

Author:

Pushankina Polina,Baryshev Mikhail,Petriev IliyaORCID

Abstract

A controlled strategy for the electrochemical synthesis of mono- and bimetallic nanoparticles with a unique and complex morphology has been developed. The investigation of the effect of changing the surfactant concentration and current density regulating the medium pH has revealed the fundamental patterns of nanoparticle growth. The developed method has allowed to synthesis of nanoparticles with a controlled pentabranched structure for the monometallic palladium as well as for favorable combinations of metals—Pd-Ag and Pd-Pt. The obtained nanoparticles were investigated in alkaline methanol oxidation. The results demonstrated quite high catalytic activity up to 83.51 mA cm−2 and long-term stability, which are caused by the increase in electrochemically active surface area by increasing the active center’s number. This was made possible due to the creation of unusual nanoparticle morphology, namely the presence of high-energy high-index facets. The developed nanoparticles were also studied as a modifying coating for hydrogen-permeable membranes in the processes of hydrogen transport. The membranes coated with the nanoparticles demonstrated sufficiently high hydrogen flux up to 11.33 mmol s−1 m−2 and high H2/N2 selectivity up to 2254. Such results can be explained by the obvious acceleration of surface processes through the application of the developed nanoparticles. The novel synthesis strategy can potentially be extended to other metal nanoparticle systems. Thus it can be an effective way to solve relevant problems of design of controlled synthetic methods allowing the nanoparticle morphology tuning according to the required functional properties.

Funder

Russian Science Foundation and Kuban Scientific Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3