Hydrogen Permeability of Composite Pd–Au/Pd–Cu Membranes and Methods for Their Preparation

Author:

Pushankina Polina1,Andreev Georgy1,Petriev Iliya12ORCID

Affiliation:

1. Department of Physics, Kuban State University, Krasnodar 350040, Russia

2. Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Centre of the RAS, Rostov-on-Don 344006, Russia

Abstract

Thin Pd–40%Cu films were obtained via the classical melting and rolling method, magnetron sputtering, and modified with nanostructured functional coatings to intensify the process of hydrogen transportation. The films were modified by electrodeposition, according to the classical method of obtaining palladium black and “Pd–Au nanoflowers” with spherical and pentagonal particles, respectively. The experiment results demonstrated the highest catalytic activity (89.47 mA cm−2), good resistance to CO poisoning and long-term stability of Pd–40%Cu films with a pentagonal structured coating. The investigation of the developed membranes in the hydrogen transport processes in the temperature range of 25–300 °C also demonstrated high and stable fluxes of up to 475.28 mmol s−1 m−2 (deposited membranes) and 59.41 mmol s−1 m−2 (dense metal membranes), which were up to 1.5 higher, compared with membrane materials with classic niello. For all-metal modified membranes, the increase in flux was up to sevenfold, compared with a smooth membrane made of pure palladium, and for deposited films, this difference was manyfold. The membrane materials’ selectivity was also high, up to 4419. The developed strategy for modifying membrane materials with functional coatings of a fundamentally new complex geometry can shed new light on the development and fabrication of durable and highly selective palladium-based membranes for gas steam reformers.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3