Impact of Growth Conditions on Pseudomonas fluorescens Morphology Characterized by Atomic Force Microscopy

Author:

Kahli HoussemORCID,Béven Laure,Grauby-Heywang Christine,Debez Nesrine,Gammoudi Ibtissem,Moroté Fabien,Sbartai HanaORCID,Cohen-Bouhacina TouriaORCID

Abstract

This work is dedicated to the characterization by Atomic Force Microscopy (AFM) of Pseudomonas fluorescens, bacteria having high potential in biotechnology. They were first studied first in optimal conditions in terms of culture medium and temperature. AFM revealed a more-or-less elongated morphology with typical dimensions in the micrometer range, and an organization of the outer membrane characterized by the presence of long and randomly distributed ripples, which are likely related to the organization of lipopolysaccharides (LPS). The outer membrane also presents invaginations, some of them showing a reorganization of ripples, which could be the first sign of a bacterial stress response. In a second step, bacteria grown under unfavorable conditions were characterized. The choice of the medium appeared to be more critical in the case of the second generation of cells, the less adapted medium inducing not only changes in the membrane organization but also larger damages in bacteria. An increased growth temperature affected both the usual “swollen” morphology and the organization of the outer membrane. Here also, LPS likely contribute to membrane remodelling, which makes them potential markers to track cell state changes.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3