Abstract
Heat stress (HS) damages the global beef industry by reducing growth performance causing high economic losses each year. However, understanding the physiological mechanisms of HS in Hanwoo calves remains elusive. The objective of this study was to identify the potential biomarkers and metabolic pathways involving different levels of heat stress in Hanwoo calves. Data were collected from sixteen Hanwoo bull calves (169.6 ± 4.6 days old, BW of 136.9 ± 6.2 kg), which were maintained at four designated ranges of HS according to the temperature–humidity index (THI) including: threshold (22 to 24 °C, 60%; THI = 70 to 73), mild (26 to 28 °C, 60%; THI = 74 to 76), moderate (29 to 31 °C, 80%; THI = 81 to 83), and severe (32 to 34 °C, 80%; THI = 89 to 91) using climate-controlled chambers. Blood was collected once every three days to analyze metabolomics. Metabolic changes in the serum of calves were measured using GC-TOF-MS, and the obtained data were calculated by multivariate statistical analysis. Five metabolic parameters were upregulated and seven metabolic parameters were downregulated in the high THI level compared with the threshold (p < 0.05). Among the parameters, carbohydrates (ribose, myo-inositol, galactose, and lactose), organic compounds (acetic acid, urea, and butenedioic acid), fatty acid (oleic acid), and amino acids (asparagine and lysine) were remarkably influenced by HS. These novel findings support further in-depth research to elucidate the blood-based changes in metabolic pathways in heat-stressed Hanwoo beef calves at different levels of THI. In conclusion, these results indicate that metabolic parameters may act as biomarkers to explain the HS effects in Hanwoo calves.
Funder
"Cooperative Research Program for Agriculture Science and Technology Development" Rural Development Administration, Republic of Korea
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献