Comprehensive Transcriptome Analysis of Hair Follicle Morphogenesis Reveals That lncRNA-H19 Promotes Dermal Papilla Cell Proliferation through the Chi-miR-214-3p/β-Catenin Axis in Cashmere Goats

Author:

Zhang YuelangORCID,Li Fang,Shi Yujie,Zhang Tongtong,Wang Xin

Abstract

Cashmere is initiated and develops in the fetal stages and the number and density of secondary hair follicles (SHFs) determine cashmere production and quality. Growing evidence indicates that both microRNA (miRNA) and long non-coding RNA (lncRNA) play an indispensable role in hair follicle (HF) growth and development. However, little is known about miRNAs, lncRNAs, and their functions as well as their interactions during cashmere initiation and development. Here, based on lncRNA and miRNA high-throughput sequencing and bioinformatics analysis, we identified 10,485 lncRNAs, 40,639 mRNAs, and 605 miRNAs in cashmere goat skin during HF induction, organogenesis, and cytodifferentiation stages. Among them, 521 lncRNAs, 5976 genes, and 204 miRNAs were differentially expressed (DE). KEGG analysis of DE genes indicated that ECM–receptor interaction and biosynthesis of amino acids were crucial for HF development. Notch, TGF-beta, and Wnt signaling pathways were also identified, which are conventional pathways associated with HF growth and development. Then, the ceRNA regulatory network was constructed, and the impact of lncRNA H19 was investigated in dermal papilla (DP) cells. The MTT, CCK-8, and EdU assays showed that the viability and proliferation of DP cells were promoted by H19, and mechanistic studies suggested that H19 performed its function through the chi-miR-214-3p/β-catenin axis. The present study created a resource for lncRNA, miRNA, and mRNA studies in cashmere morphogenesis. It could contribute to a better understanding of the molecular mechanism of ncRNAs involved in the regulation of HF growth and development.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3