Comprehensive analysis of the circular RNA expression profile and circRNA–miRNA–mRNA network in the goat skin with divergent wool curvature

Author:

Su Yingxiao1ORCID,Zhao Zhanqiang2,Liu Zhanfa2,Li Xiaobo13,Chen Qian13,Pu Yabin1,Jiang Lin1,He Xiaohong1,Ma Yuehui1,Zhao Qianjun14

Affiliation:

1. Institute of Animal Science Chinese Academy of Agricultural Sciences (CAAS) Beijing China

2. Ningxia Hui Autonomous Region Breeding Ground of Zhongwei Goat Zhongwei China

3. Department of Animal Breeding and Reproduction College of Animal Science and Technology Yunnan Agricultural University Kunming China

4. CAAS‐ILRI Joint Laboratory on Livestock and Forage Genetic Resources Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China

Abstract

AbstractWool curvature is one of the most valuable characteristics of Zhongwei goat fur. As the goats grow, the curvature progressively diminishes, which has a substantial impact on the quality and market value of wool. Circular RNAs (circRNAs) are a class of noncoding RNA and play vital roles in animal growth and development. However, the expression and function of circRNAs in the wool curvature of Zhongwei goats are unclear. In our study, we conducted circRNA expression profiling of Zhongwei goat skin exhibiting divergent curvature wool phenotypes at two developmental stages using the RNA‐seq. In total, 12,682 circRNAs and 158 differentially expressed circRNAs (DE circRNAs) were identified. KEGG analysis illustrated that host genes of DE circRNAs were significantly enriched in the signaling pathways of Ras, JAK/STAT5, and cAMP, which might affect wool curvature. We further validated five circRNAs using qRT‐PCR, which were consistent with the sequencing results. Functional verification assay demonstrated that circRNA8782 regulated fibroblast proliferation. In addition, we constructed a regulatory competing endogenous RNA (ceRNA) network and predicted circRNA3173‐miR‐16b‐5p‐IGF1 axes involved in the regulation of wool curvature. Our result will provide the foundation for uncovering the regulatory mechanisms of underlying wool curvature patterns in goats.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3