Interdomain Linker Effect on the Mechanical Stability of Ig Domains in Titin

Author:

Tong Bei,Tian Fang,Zheng PengORCID

Abstract

Titin is the largest protein in humans, composed of more than one hundred immunoglobulin (Ig) domains, and plays a critical role in muscle’s passive elasticity. Thus, the molecular design of this giant polyprotein is responsible for its mechanical function. Interestingly, most of these Ig domains are connected directly with very few interdomain residues/linker, which suggests such a design is necessary for its mechanical stability. To understand this design, we chose six representative Ig domains in titin and added nine glycine residues (9G) as an artificial interdomain linker between these Ig domains. We measured their mechanical stabilities using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) and compared them to the natural sequence. The AFM results showed that the linker affected the mechanical stability of Ig domains. The linker mostly reduces its mechanical stability to a moderate extent, but the opposite situation can happen. Thus, this effect is very complex and may depend on each particular domain’s property.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3