The Examination of the Role of Rice Lysophosphatidic Acid Acyltransferase 2 in Response to Salt and Drought Stresses

Author:

Shaikh Aamir Ali,Alamin Alfatih,Jia Chenxi,Gong Wei,Deng Xianjun,Shen QingwenORCID,Hong Yueyun

Abstract

Phosphatidic acid (PA) is an important signal molecule in various biological processes including osmotic stress. Lysophosphatidic acid acyltransferase (LPAT) acylates the sn-2 position of the glycerol backbone of lysophosphatidic acid (LPA) to produce PA. The role of LPAT2 and its PA in osmotic stress response remains elusive in plants. Here we showed that LPAT2-derived PA is important for salt and drought stress tolerance in rice. Rice LPAT2 was localized to the endoplasmic reticulum (ER) to catalyze the PA synthesis. The LPAT2 transcript was induced by osmotic stress such as high salinity and water deficit. To reveal its role in osmotic stress response, an LPAT2 knockdown mutant, designated lpat2, was isolated from rice, which contained a reduced PA level relative to wild type (WT) plants under salt stress and water deficit. The lpat2 mutant was more susceptible to osmotic stress and less sensitive to abscisic acid (ABA) than that of WT, which was recovered by either PA supplementation or genetic LPAT2 complementation. Moreover, suppressed LPAT2 also led to a large number of differentially expressed genes (DEGs) involved in diverse processes, particularly, in ABA response, kinase signaling, and ion homeostasis in response to salt stress. Together, LPAT2-produced PA plays a positive role in osmotic tolerance through mediating ABA response, which leads to transcriptional alteration of genes related to ABA response, protein kinase signaling, and ion homeostasis.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3