Perfluorobutanoic Acid (PFBA) Induces a Non-Enzymatic Oxidative Stress Response in Soybean (Glycine max L. Merr.)

Author:

Omagamre Eguono W.ORCID,Mansourian Yeganeh,Liles Diamond,Tolosa Tigist,Zebelo Simon A.,Pitula Joseph S.ORCID

Abstract

Short-chain perfluoroalkyl substances (PFAS) are generally considered to be of less environmental concern than long-chain analogues due to their comparatively shorter half-lives in biological systems. Perfluorobutanoic acid (PFBA) is a short-chain PFAS with the most root–shoot transfer factor of all PFAS. We investigated the impact of extended exposure of soybean plants to irrigation water containing environmentally relevant (100 pg–100 ng/L) to high (100 µg–1 mg/L) concentrations of PFBA using phenotypical observation, biochemical characterization, and transcriptomic analysis. The results showed a non-monotonous developmental response from the plants, with maximum stimulation and inhibition at 100 ng/L and 1 mg/L, respectively. Higher reactive oxygen species and low levels of superoxide dismutase (SOD) and catalase (CAT) activity were observed in all treatment groups. However transcriptomic analysis did not demonstrate differential expression of SOD and CAT coding genes, whereas non-enzymatic response genes and pathways were enriched in both groups (100 ng/L and 1 mg/L) with glycine betaine dehydrogenase showing the highest expression. About 18% of similarly downregulated genes in both groups are involved in the ethylene signaling pathway. The circadian rhythm pathway was the only differentially regulated pathway between both groups. We conclude that, similar to long chain PFAS, PFBA induced stress in soybean plants and that the observed hormetic stimulation at 100 ng/L represents an overcompensation response, via the circadian rhythm pathway, to the induced stress.

Funder

United States Department of Agriculture

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3