Rigid Protection System of Infrastructures against Forest Fires

Author:

Vaz Gilberto,Raposo JorgeORCID,Reis LuísORCID,Monteiro PedroORCID,Viegas Domingos

Abstract

The destruction caused by forest fires generates social impacts, environmental impacts, and extremely important economic impacts caused by the destruction of a wide range of infrastructures and essential goods. Therefore, as it is impossible to remove all the infrastructures from the forest and wildland–urban interface, the design of protection systems is essential. The main objective of this work is the development of a low-cost protection system, with rigid panels, requiring a simple installation, in order to protect outdoor infrastructures such as telecommunications stations, shelters, roadside enclosures, power cabinets, and other structures. A study was carried out on panels that could be used for protection in order to determine whether the protective material would be more appropriate. Taking into account the fire resistance behavior, thermal and structural properties and cost, the panels selected were the magnesium oxide fiberglass reinforced. The protection was constructed, installed on a telecommunication cabinet, and experimentally laboratory tested in a wind combustion tunnel. To collect the data InfraRed and video cameras, heat flux sensors, and thermocouples were used to determine the fire propagation, heat flux, and temperatures, respectively. The experimental data show that the low-cost protection is effective for protecting telecommunication cabinets and similar infrastructures against forest fires.

Funder

Fundação para a Ciência e Tecnologia

European Commission

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3