Thermal Hazard and Smoke Toxicity Assessment of Building Polymers Incorporating TGA and FTIR—Integrated Cone Calorimeter Arrangement

Author:

Doley Preety MoniORCID,Yuen Anthony Chun YinORCID,Kabir Imrana,Liu Luzhe,Wang ChengORCID,Chen Timothy Bo YuanORCID,Yeoh Guan HengORCID

Abstract

Building polymers are highly flammable and produce a vast amount of toxic chemical compounds in the event of a fire which can lead to potential incapacitation and death. To gain an in-depth understanding of this issue, smoke toxicity and thermal characteristics of seven commonly used building polymers were analysed through a systematic fire performance evaluation system using a Thermogravimetric Analyzer and a Cone Calorimeter coupled with an FTIR arrangement. Four Fractional Effective Dose (FED) expressions were compared to assess the smoke toxicity of the fire effluents based on different assumptions. It was found that FEDN2, calculated using Purser’s equation, reported the highest values of FED with the following order of potential smoke toxicity at 50 kW/m2 radiative heat flux: LDPU > HDPU > PE > HDEPS > XPS > EVA > LDEPS. Furthermore, fire performance evaluation of the polymers was carried out by considering three key fire risk parameters, i.e., flashover propensity, total heat released, and toxic hazard. At 50 kW/m2 radiative heat flux, HDPU exhibited 11.7 times flashover propensity compared to the least flammable polymer (HDEPS), EVA exhibited 5 times total heat release compared to the polymer with the lowest total heat release (LDEPS) and, LDPU exhibited 6.7 potential times toxic hazard compared to the least toxic polymer (EVA).

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3