Wildfire Risk in the Complex Terrain of the Santa Barbara Wildland–Urban Interface during Extreme Winds

Author:

Zigner Katelyn,Carvalho Leila M. V.ORCID,Jones CharlesORCID,Benoit John,Duine Gert-JanORCID,Roberts DarORCID,Fujioka Francis,Moritz Max,Elmquist Nic,Hazard Rob

Abstract

Each year, wildfires ravage the western U.S. and change the lives of millions of inhabitants. Situated in southern California, coastal Santa Barbara has witnessed devastating wildfires in the past decade, with nearly all ignitions started by humans. Therefore, estimating the risk imposed by unplanned ignitions in this fire-prone region will further increase resilience toward wildfires. Currently, a fire-risk map does not exist in this region. The main objective of this study is to provide a spatial analysis of regions at high risk of fast wildfire spread, particularly in the first two hours, considering varying scenarios of ignition locations and atmospheric conditions. To achieve this goal, multiple wildfire simulations were conducted using the FARSITE fire spread model with three ignition modeling methods and three wind scenarios. The first ignition method considers ignitions randomly distributed in 500 m buffers around previously observed ignition sites. Since these ignitions are mainly clustered around roads and trails, the second method considers a 50 m buffer around this built infrastructure, with ignition points randomly sampled from within this buffer. The third method assumes a Euclidean distance decay of ignition probability around roads and trails up to 1000 m, where the probability of selection linearly decreases further from the transportation paths. The ignition modeling methods were then employed in wildfire simulations with varying wind scenarios representing the climatological wind pattern and strong, downslope wind events. A large number of modeled ignitions were located near the major-exit highway running north–south (HWY 154), resulting in more simulated wildfires burning in that region. This could impact evacuation route planning and resource allocation under climatological wind conditions. The simulated fire areas were smaller, and the wildfires did not spread far from the ignition locations. In contrast, wildfires ignited during strong, northerly winds quickly spread into the wildland–urban interface (WUI) toward suburban and urban areas.

Funder

National Science Foundation

National Science Foundation: Physical and Dynamic Meteorology program

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3