Sundowner Winds at Montecito during the Sundowner Winds Experiment

Author:

Fovell Robert G.1ORCID,Brewer Matthew J.1ORCID

Affiliation:

1. Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, NY 12222, USA

Abstract

This study investigates the predictability of downslope windstorms located in Santa Barbara County, California, locally referred to as Sundowner winds, from both observed relationships and a high-resolution, operational numerical weather prediction model. We focus on April 2022, during which the Sundowner Winds Experiment (SWEX) was conducted. We further refine our study area to the Montecito region owing to some of the highest wind measurements occurring at or near surface station MTIC1, situated on the coast-facing slope overlooking the area. Fires are not uncommon in this area, and the difficulty of egress makes the population particularly vulnerable. Area forecasters often use the sea-level pressure difference (ΔSLP) between Santa Barbara Airport (KSBA) and locations to the north such as Bakersfield (KBFL) to predict Sundowner windstorm occurrence. Our analysis indicates that ΔSLP by itself is prone to high false alarm rates and offers little information regarding downslope wind onset, duration, or magnitude. Additionally, our analysis shows that the high-resolution rapid refresh (HRRR) model has limited predictive skill overall for forecasting winds in the Montecito area. The HRRR, however, skillfully predicts KSBA-KBFL ΔSLP, as does GraphCast, a machine learning weather prediction model. Using a logistic regression model we were able to predict the occurrence of winds exceeding 9 m s−1 with a high probability of detection while minimizing false alarm rates compared to other methods analyzed. This provides a refined and easily computed algorithm for operational applications.

Funder

National Science Foundation

Publisher

MDPI AG

Reference45 articles.

1. Impact of anthropogenic climate change on wildfire across western US forests;Abatzoglou;Proc. Natl. Acad. Sci. USA,2016

2. North, G.R., Pyle, J.A., and Zhang, F. (2003). Downslope winds. Encyclopedia of Atmospheric Sciences, Elsevier Science.

3. Numerical simulations of the foehn in the Rhine Valley on 24 October 1999 (MAP IOP 10);Chimani;Mon. Weather Rev.,2004

4. Local regimes of atmospheric variability: A case study of Southern California;Conil;J. Clim.,2006

5. Foehn-like winds and elevated fire danger conditions in Southeastern Australia;Sharples;J. Appl. Meteor. Climatol.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3