Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review

Author:

Holloway JacintaORCID,Mengersen Kerrie

Abstract

Interest in statistical analysis of remote sensing data to produce measurements of environment, agriculture, and sustainable development is established and continues to increase, and this is leading to a growing interaction between the earth science and statistical domains. With this in mind, we reviewed the literature on statistical machine learning methods commonly applied to remote sensing data. We focus particularly on applications related to the United Nations World Bank Sustainable Development Goals, including agriculture (food security), forests (life on land), and water (water quality). We provide a review of useful statistical machine learning methods, how they work in a remote sensing context, and examples of their application to these types of data in the literature. Rather than prescribing particular methods for specific applications, we provide guidance, examples, and case studies from the literature for the remote sensing practitioner and applied statistician. In the supplementary material, we also describe the necessary steps pre and post analysis for remote sensing data; the pre-processing and evaluation steps.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference97 articles.

1. Early History of LARShttps://www.lars.purdue.edu/home/LARSHistory.html

2. Earth observation in service of the 2030 Agenda for Sustainable Development

3. European Space Agency Earth Observation for Sustainable Developmenthttp://eo4sd.esa.int/

4. United Nations United Nations Global Working Group on Big Data for Official Statisticshttps://unstats.un.org/bigdata/

5. Statistics Canada Integrated Crop Yield Modelling Using Remote Sensing, Agroclimatic Data and Survey Datahttp://www23.statcan.gc.ca/imdb-bmdi/document/5225_D1_T9_V1-eng.htm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3