Consistent Calibration of VIRR Reflective Solar Channels Onboard FY-3A, FY-3B, and FY-3C Using a Multisite Calibration Method

Author:

Wang Ling,Hu Xiuqing,Chen Lin,He Lingli

Abstract

The FengYun-3 (FY-3) Visible Infrared Radiometer (VIRR), along with its predecessor, the Multispectral Visible Infrared Scanning Radiometer (MVISR), onboard the FY-1C and FY-1D, has collected continuous daily global observations for 18 years. Achieving accurate and consistent calibration for VIRR reflective solar bands (RSBs) has been challenging, as there is no onboard calibrator and the frequency of in situ vicarious calibration is limited. In this study, a new set of reflectance calibration coefficients were derived for RSBs of the FY-3A, FY-3B, and FY-3C VIRRs using a multisite (MST) calibration method. This method is an extension of a previous MST calibration method, which relies on radiative transfer modeling over the multiple stable earth sites, and no synchronous in situ measurements are needed; hence, it can be used to update the VIRR calibration on a daily basis. The on-orbit radiometric changes of the VIRR onboard the FY-3 series were assessed based on analyses of new sets of calibration slopes. Then, all recalibrated VIRR reflectance data over Libya 4, the most frequently used stable Earth site, were compared with those provided from the Level 1B (L1B) product. Additional validation was performed by comparing the recalibrated VIRR data with those derived from radiative transfer simulations using measurements from automatic calibration instruments in Dunhuang. The results indicate that the radiometric response changes of the VIRRs onboard FY-3A and FY-3B were larger than those of FY-3C VIRR and were wavelength dependent. The current approach can provide consistent VIRR reflectances across different FY-3 satellite platforms. After recalibration, differences in top-of-atmosphere (TOA) reflectance data across different VIRRs during the whole lifetime decreased from 5–10% to less than 3%. The comparison with the automatic calibration method indicates that MST calibration shows good accuracy and lower temporal oscillations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference30 articles.

1. Assessment and Correction of on-Orbit Radiometric Calibration for FY-3 VIRR Thermal Infrared Channels

2. Post launch site calibration of visible and near-infrared channels of FY-3A visible and infrared radiometers;Li;Opt. Precis. Eng.,2009

3. Characterization of CRCS Dunhuang test site and vicarious calibration utilization for Fengyun (FY) series sensors

4. On-orbit response variation analysis of FY-3 MERSI reflective solar bands based on Dunhuang site calibration;Sun;Spectrosc. Spectr. Anal.,2012

5. Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3