Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images

Author:

Adugna TesfayeORCID,Xu Wenbo,Fan Jinlong

Abstract

The type of algorithm employed to classify remote sensing imageries plays a great role in affecting the accuracy. In recent decades, machine learning (ML) has received great attention due to its robustness in remote sensing image classification. In this regard, random forest (RF) and support vector machine (SVM) are two of the most widely used ML algorithms to generate land cover (LC) maps from satellite imageries. Although several comparisons have been conducted between these two algorithms, the findings are contradicting. Moreover, the comparisons were made on local-scale LC map generation either from high or medium resolution images using various software, but not Python. In this paper, we compared the performance of these two algorithms for large area LC mapping of parts of Africa using coarse resolution imageries in the Python platform by the employing Scikit-Learn (sklearn) library. We employed a big dataset, 297 metrics, comprised of systematically selected 9-month composite FegnYun-3C (FY-3C) satellite images with 1 km resolution. Several experiments were performed using a range of values to determine the best values for the two most important parameters of each classifier, the number of trees and the number of variables, for RF, and penalty value and gamma for SVM, and to obtain the best model of each algorithm. Our results showed that RF outperformed SVM yielding 0.86 (OA) and 0.83 (k), which are 1–2% and 3% higher than the best SVM model, respectively. In addition, RF performed better in mixed class classification; however, it performed almost the same when classifying relatively pure classes with distinct spectral variation, i.e., consisting of less mixed pixels. Furthermore, RF is more efficient in handling large input datasets where the SVM fails. Hence, RF is a more robust ML algorithm especially for heterogeneous large area mapping using coarse resolution images. Finally, default parameter values in the sklearn library work well for satellite image classification with minor/or no adjustment for these algorithms.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3